Refine Your Search

Topic

Search Results

Standard

Recommended Guidelines for Load/Deformation Testing of Elastomeric Components

2017-01-05
CURRENT
J1636_201701
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Springs: Specification Check Lists

2016-08-02
CURRENT
J1122_201608
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
Standard

Leaf Springs For Motor Vehicle Suspension - Made to Metric Units

2016-04-05
CURRENT
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Undervehicle Coupon Corrosion Tests

2016-04-05
CURRENT
J1293_201604
This document is a road test procedure for comparing the corrosion resistance of both coated and uncoated sheet steels in an undervehicle deicing salt environment.
Standard

Prevention of Corrosion of Motor Vehicle Body and Chassis Components

2016-04-05
CURRENT
J447_201604
This SAE Information Report provides automotive engineers with the basic principles of corrosion, design guidelines to minimize corrosion, and a review of the various materials, treatments, and processes available to inhibit corrosion of both decorative and functional body and chassis components.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
CURRENT
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Stainless Steel 17-7 PH Spring Wire and Springs

2016-04-05
CURRENT
J217_201604
This SAE Recommended Practice covers a high-quality corrosion-resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
Standard

Stainless Steel, SAE 30302, Spring Wire and Springs

2016-04-05
CURRENT
J230_201604
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It also covers processing requirements of springs and forms fabricated from this wire.
Standard

Leaf Springs for Motor Vehicle Suspension - Made to Customary U.S. Units

2016-04-05
CURRENT
J510_201604
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

Proving Ground Vehicle Corrosion Testing

2016-04-05
CURRENT
J1950_201604
The facilities used by domestic automotive manufacturers to provide accelerated corrosion aging of complete vehicles are described in general. The types of vehicles tested, general test methodology, and techniques used to determine test-to-field correlation are discussed. The different procedures used throughout the industry produce different results on various vehicle coatings, components, and systems. The key to successful interpretation of test results is a thorough understanding of the corrosion mechanisms involved and the effects of test limitations on these mechanisms.
Standard

Laboratory Cyclic Corrosion Test

2016-04-05
CURRENT
J2334_201604
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Parallel Side Splines for Soft Broached Holes in Fittings

2014-06-05
CURRENT
J499_201406
This Information Report along with SAE J500 and J501 is generally understood to be technically obsolete for the design of new applications. However, it is listed for those existing applications where it may be required. For the design of new applications, consult ANSI B92.1-1970—Involute Splines and Inspections Standard. [The dimensions, given in inches, apply only to soft broached holes. The shaft dimensions depend upon the shape and material of the parts, their heat treatment, and methods of machining to give the required fit. The method and amount of "breaking" sharp corners and edges also depend upon the conditions and requirements of each application. The formula for theoretical torque capacity (pressure on sides of spline) in inch-pounds per inch of bearing length (L) and at 1000 psi pressure is: The tolerances allowed are for good construction and may be readily maintained by usual broaching methods.
Standard

Spherical Rod Ends

2012-10-15
CURRENT
J1120_201210
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

Metric Spherical Rod Ends

2012-10-15
CURRENT
J1259_201210
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in the types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

Metric Yoke Type Rod Ends

2012-10-15
CURRENT
J1651_201210
This SAE Standard provides dimensions, tolerances, material, and heat treatment for yoke type rod ends with metric threads and for use with metric size clevis pins.
X